Diccionario Matemáticas - Fórmulas Matemáticas - Conceptos Matemáticos - Definiciones Matemáticas - Formularios Matemáticos - Glosario Matemático - Términos Matemáticos - Propiedades Matemáticas - Matemáticas - Ecuaciones Matemáticas - Historia Matemática - Constructos Matemáticos - Vocablos Matemáticos - Tips Matemáticos - Reglas Matemáticas - Teoremas - Axiomas

martes, 27 de abril de 2010

Geometría Dinámica

Geometría Dinámica: Relativo a un programa con una serie de elementos u objetos elementales (puntos, segmentos, circunferencias, polígonos, etc), a partir de los cuales es posible construir nuevos objetos, así como establecer relaciones entre ellos, de manera que al cambiar las condiciones de los objetos iniciales, se mantengan las relaciones existentes entre ellos, previamente establecidas a través de un conjunto de herramientas disponibles.
Algunos programas de Geometría Dinámica: Cabri Géomètre, Geómetra, Cinderella, Regla y compás, KGeo, Dr. Genio o Geogebra.

viernes, 23 de abril de 2010

Criba de K.P. Swallow - Criba de Eratóstenes

Criba de Swallow:

Una forma simpática de encontrar los números primos menores que una cierta cantidad (en este caso vamos a usar la cantidad 100) es la propuesta por K.P.Swallow, que se presenta a continuación: Se escriben los números en 6 columnas, luego se tachan las columnas del 2 (no inlcuyéndole), 4 y 6, por ser pares. Se tachan las columnas de 3 (sin incluirlo), por ser múltiplos de 3.

Dejamos sin tachar el 5 y luego con a, b, c y d se tachan los múltilos del 5.

Los múltiplos de 7 se tachan con las columnas i, ii y iii.

Lo que quedan son los números Primos.

==========
Criba:
Una criba es un cedazo, un colador, como los que se usan para quitar las impurezas de las semillas.

Criba de Eratóstenes:
El matemático y filósofo griego Eratóstenes, en el siglo III a. C., escribió en una plancha metálica tres o cuatro mil números y fue contando de dos en dos pri­mero, con lo que tenía los múltiplos de dos, que por tanto no eran primos e hizo agujeros en los lugares correspondientes; luego contó de tres en tres e hizo nue­vos agujeros; luego cada cinco, y así sucesivamente. Los números no tachados, los que quedaban, eran los primos. Es el primer método que registra la historia para obtener los primos: la conocida "criba de Eratóstenes".

martes, 20 de abril de 2010

Un poco de Historia de las Matemáticas

Historia de las Matemáticas:
(Tomado de: http://undreasone.wordpress.com/2008/09/29/mi-blog-de-matematicas/)

a) Nacimiento de las matemáticas: Este periodo se prolonga hasta los siglos VI-V a.C. cuando las matemáticas se conviertesn en una ciencia independiente con objeto y metodología propios. También podría denominarse matemáticas antiguas o prehelénicas y en ella se suelen englobar las matemáticas de las antiguas civilizaciones de Egipto, Mesopotamia, China e India. Grecia estaría situada a caballo entre este periodo y el siguiente.

b) Periodo de las matemáticas elementales:A continuación del anterior, se prolonga desde los siglos VI-V a.C. hasta finales del siglo XVI. Durante este periodo se obtuvieron grandes logros en el estudio de las matemáticas constantes, comenzando a desarrollarse la geometría analítica y el análisis infinitesimal.

c) Periodo de formación de las matemáticas de magnitudes variables: El comienzo de es periodo está representado por la introducción de las magnitudes variables en la geometría analítica de Descartes y la creación del cálculo diferencial e integral en los trabajos de I. Newton y G.V. Leibniz. En el transcurso de este periodo se formaron casi todas las disciplinas conocidas actualmente, así como los fundamentos clásicos de las matemáticas contemporáneas. Este periodo se extendería aproximadamente hasta mediados del siglo XIX.

d) Periodo de las matemáticas contemporáneas: En proceso de creación desde mediados del siglo XIX. En este periodo el volumen de las formas espaciales y relaciones cuantitativas abarcadas por los métodos de las matemáticas han aumentado espectacularmente, e incluso podríamos decir exponencialmente desde la llegada del ordenador.

ÁLGEBRA Y ARITMÉTICA

En la antigüedad, el Álgebra fue una parte inseparable de la Aritmética, más tarde se separó de ella. Ésta es la razón por la que en gran parte de la literatura científica a la hora de estudiar ambas ramas se hace de una manera conjunta.


La aritmética será la ciencia que se ocupa de los objetos concretos, esto es, de los números. En cambio el Álgebra es, en esencia, la doctrina de las operaciones matemáticas analizadas desde un punto de vista abstracto y genérico, independientemente de los números o objetos concretos.

El concepto de número surgió como consecuencia de la necesidad práctica de contar objetos. Inicialmente se contaban con ayuda de los medios disponibles: dedos, piedras… (basta recordar por ejemplo, que la palabra cálculo deriva de la palabra latina calculus que significa contar con piedras). La serie de números naturales era, obviamente, limitada, pero la conciencia sobre la necesidad de ampliar el conjunto de números representa ya una importante etapa en el camino hacia la matemática moderna.

Paralelamente a la ampliación de los números se desarrolló su simbología y los sistemas de numeración, diferentes para cada civilización.


Los egipcios desarrollaron el llamado “sistema de numeración jeroglífico”, que consistía en denominar cada uno de los “números clave” (1, 10, 100, 1000…) por un símbolo (palos, lazos, figuras humanas en distintas posiciones…). Los demás números se formaban añadiendo a un número u otro del número central uno o varios de estos números clave. Un sistema de numeración posterior a éste, pero de similares características sería el sistema de numeración romano.

También crearon fracciones, pero sólo como divisores de la unidad, esto es, de la forma 1/n; el resto de fracciones se expresaban siempre como combinaciones de estas fracciones.

Aparecen también durante la expansión de esta civilización los primeros métodos de operaciones matemáticas, todos ellos con carácter aditivo, para números enteros y fracciones.

Algebraicamente se resuelven determinadas ecuaciones de la forma x+ax=b donde la incógnita x se denominaba “montón”.

En la civilización mesopotámicautilizaron el sistema de numeración posicional sexagesimal, carente de cero y en el que un mismo símbolo podía representar indistintamente varios números que se diferenciaban por el enunciado del problema. Desarrollaron un eficaz sistema de notación fraccionario, que permitió establecer aproximaciones decimales verdaderamente sorprendentes. Esta evolución y simplificación del método fraccionario permitió el desarrollo de nuevos algoritmos que se atribuyeron a matemáticos de épocas posteriores, baste como ejemplo el algoritmo de Newton para la aproximación de raíces cuadradas.

Desarrollaron el concepto de número inverso, lo que simplificó notablemente la operación de la división.

Encontramos también en esta época los primeros sistemas de dos ecuaciones con dos incógnitas; pero sin duda la gran aportación algebraica babilónica se centra en el campo de la potenciación y en la resolución de ecuaciones cuadráticas, tanto es así que llegaron a la solución para ecuaciones de la forma y también mediante el cambio de variable t=ax. Efectuaron un sin fin de tabulaciones que utilizaron para facilitar el cálculo, por ejemplo de algunas ecuaciones cúbicas. El dominio en esta materia era tal, que incluso desarrollaron algorítmos para el cálculo de sumas de progresiones, tanto aritméticas como geométricas.

Su capacidad de abstracción fue tal que desarrollaron muchas de las que hoy se conocen como ecuaciones Diofánticas, algunas de las cuales están íntimamente unidas con conceptos geométricos.

En la Antigua Civilización China el sistema de numeración es el decimal jeroglífico. Las reglas de las operaciones son las habituales, aunque destaca como singularidad, que en la división de fracciones se exige la previa reducción de éstas a común denominador. Dieron por sentado la existencia de números negativos, aunque nunca los aceptaron como solución a una ecuación.

La contribución algebraica más importante es, sin duda, el perfeccionamiento alcanzado en la regla de resolución de sistemas de ecuaciones lineales. Para todos los sistemas se establece un método genérico de resolución muy similar al que hoy conocemos como método de Gauss, expresando incluso los coeficientes en forma matricial, tranformándolos en ceros de manera escalonada.

Inventaron el “tablero de cálculo”, artilugio consistente en una colección de palillos de bambú de dos colores (un color para expresar los números positivos y otro para los negativos) y que podría ser considerado como una especie de ábaco primitivo.

Esta orientación algorítmica de las matemáticas en la China Antigua, se mantiene hasta mediados del siglo XIV debido fundamentalmente a las condiciones socio-económicas de esta sociedad. Con el desarrollo del “método del elemento celeste” se culminó el desarrollo del álgebra en China en la edad media. Este método, desarrollado por Chou Shi Hié, permitía encontrar raíces no sólo enteras, sino también racionales, e incluso aproximaciones decimales para ecuaciones de la forma . El método del elemento celeste es equivalente al que en Occidente denominamos “método de Horner”, matemático que vivió medio siglo más tarde.

Otro gran logro de la época medieval fue la suma de progresiones desarrollado por Chon Huo (s. XI) y Yang Hui (s.XIII). Unido a estas sumas de progresiones se establecieron elementos sólidos en la rama de la combinatoria, construyendo el llamado “espejo precioso” de manera similar a lo que hoy conocemos como triángulo de Tartaglia o Pascal.

Los primeros indicios matemáticos de la civilización india se calculan hacia los siglos VIII-VII a.C. y parece evidente que desde tiempos remotos utilizaron un sistema de numeración posicional y decimal.

Fue, sin embargo, entre los siglos V-XII d.C. cuando la contribución a la evolución de las matemáticas se hizo especialmente interesante, destacando cuatro nombres propios: Aryabhata (s.VI), Brahmagupta (s.VI), Mahavira (s. IX) y Bhaskara Akaria (s.XII).

La característica principal del desarrollo matemático en esta cultura, es el predominio de las reglas aritméticas de cálculo, destacando la correcta utilización de los números negativos y la introducción del cero, llegando incluso a aceptar como números validos los números irracionales. Profundizaron en la obtención de reglas de resolución de ecuaciones lineales y cuadráticas, en las cuales las raíces negativas eran interpretadas como deudas. Desarrollaron también, sin duda para resolver problemas astronómicos, métodos de resolución de ecuaciones diofánticas, llegando incluso a plantear y resolver (s.XII) la ecuación , denominada ecuación de Pelt.

Matemáticamente se considera indiscutible la procedencia hindú del sistema de numeración decimal y las reglas de cálculo.

El helenismo nunca logró la unidad, ni en su época de máximo apogeo ni cuando fue amenazado con la destrucción. Ahora bien, en menos de cuatro siglos, de Tales de Mileto a Euclides de Alejandría, y lo hayan querido o no los pensadores griegos, rivales de ciudades o de escuelas, construyeron un imperio invisible y único cuya grandeza perdura hasta nuestros días. Este logro insólito se llama MATEMÁTICAS.

En los matemáticos de la época helénica los problemas prácticos relacionados con las necesidades de cálculos aritméticos, mediciones y construcciones geométricas continuaron jugando un gran papel. Sin embargo, lo novedoso era, que estos problemas poco a poco se desprendieron en una rama independiente de las matemáticas que obtuvo la denominación de “logística”. A la logística fueron atribuidas: las operaciones con números enteros, la extracción numérica de raíces, el cálculo con la ayuda de dispositivos auxiliares, cálculo con fracciones, resolución numérica de problemas que conducen a ecuaciones de 1er y 2º grado, problemas prácticos de cálculo y constructivos de la arquitectura, geometría, agrimensura, etc…

Al mismo tiempo ya en la escuela de Pitágoras se advierte un proceso de recopilación de hechos matemáticos abstractos y la unión de ellos en sistemas teóricos. Así por ejemplo, de la aritmética fue separada en una rama independiente la teoría de números, es decir, el conjunto de conocimientos matemáticos que se relacionan con las propiedades generales de las operaciones con números naturales. En esta época ya resultaban conocidos los métodos de sumación de progresiones aritméticas simples. Se estudiaban cuestiones sobre la divisibilidad de los números; fueron introducidas las proporciones aritméticas, geométricas y armónicas y diferentes medias: la aritmética, la geométrica y la armónica. Fue encontrado el método de hallazgo de la serie ilimitada de las ternas de números “pitagóricos”, esto es, ternas de números que satisfacen la ecuación a2+b2=c2.

Se descubrió de manera tajante la irracionalidad, demostrando, por ejemplo, la irracionalidad de la raíz cuadrada de 2 por la vía de reducción al absurdo. Este descubrimiento de la irracionalidad condujo inevitablemente a la elaboración de la teoría de la divisibilidad.

La etapa siguiente se caracteriza por la necesidad de crear una teoría matemática general tanto para los números racionales como para los irracionales. Paralelamente, al ampliarse el número de magnitudes medibles, debido a los números irracionales, se originó una reformulación de la geometría, dando lugar al álgebra geométrica. Esta nueva rama incluía entre otros conceptos el método de anexión de áreas, el conjunto de proposiciones geométricas que interpretaban las cantidades algebraicas, división áurea, expresión de la arista de un poliedro regular a través del diámetro de la circunferencia circunscrita. Sin embargo, el álgebra geométrica estaba limitada a objetos de dimensión no mayor que dos, siendo inaccesibles los problemas que conducían a ecuaciones de tercer grado o superiores, es decir, se hacían imposibles los problemas que no admitieran solución mediante regla y compás. La historia sobre la resolución de los tres problemas geométricos clásicos (sobre la cuadratura del círculo, la trisección de un ángulo, la duplicación del cubo) está llena de anécdotas, pero lo cierto es que como consecuencia de ellos surgieron, por ejemplo, las secciones cónicas, cálculo aproximado del número pi, el método de exhaución como predecesor del cálculo de límites o la introducción de curvas trascendentes.

Asimismo, el surgimiento de la irracionalidad condicionó la necesidad de creación de una teoría general de las relaciones, teoría cuyo fundamento inicial lo constituyó el algoritmo de Euclides.

En la época del dominio romano destaca la evolución en problemas de cálculo, siendo necesario señalar la “Métrica” de Herón de Alejandría, formulada en forma de recetario de reglas: regla de extracción de raíces cuadradas y cúbicas; cálculo de áreas y volúmenes; y en especial la conocida fórmula de Herón para calcular el área del triángulo conocidos los tres lados. Igualmente son destacables los métodos de Diofanto que encontró soluciones a más de 50 clases diferentes de ecuaciones, generalmente de segundo grado, denominadas ecuaciones diofánticas.

Resumiremos afirmando que las matemáticas de la Antigua Grecia, representan uno de los primeros ejemplos del establecimiento de las matemáticas como ciencia, desarrollándose en su seno, dentro de ciertos límites, los elementos de las ciencias matemáticas ulteriores: álgebra, análisis infinitesimal, geometría analítica, mecánica teórica y el método axiomático.

Durante el primer siglo del Imperio Musulmán no se produjo ningún desarrollo científico, ya que los árabes, no habían conseguido el impulso intelectual necesario, mientras que el interés por el saber en el resto del mundo, había desaparecido casi completamente. Fue a partir de la segunda mitad del siglo VIII, cuando comenzó el desenfrenado proceso de traducir al árabe todas las obras griegas conocidas.

Se fundaron escuelas por todo el Imperio, entre las que destaca Bait Al-Hikma (Casa de la Sabiduría). Entre los miembros de esta escuela destaca un nombre propio Mohammed ibn-Musa Al-Khowarizmi que escribió más de media docena de obras matemáticas y astronómicas, dos de las cuales han tenido especial importancia en la historia. La primera de ellas está basada en una traducción árabe de Brahmagupta y en la que se da una reproducción exacta del sistema de numeración hindú, lo que ha originado la creencia popular de que nuestro sistema de numeración procede del árabe. El “nuevo” sistema de numeración vino a ser conocido como “el de Al-Khowarizmi” y a través de deformaciones lingüísticas derivó en “algorismi” y después en algoritmo, término que, actualmente, posee un significado mucho más amplio. Igualmente, a través del titulo de su obra más importante, el Hisab al-jabr wa-al-muqabala, nos ha transmitido otro nombre mucho más popular, la palabra “álgebra”. En esta obra se estudian seis tipos de ecuaciones cuadráticas, así como un sin fin de elementos griegos.

Con posterioridad a Al-Khuwarizmi se desarrollaron infinidad de procedimientos de cálculo y algoritmos especiales, entre ellos:

  • obtención del número pi con 17 cifras exactas mediante polígonos inscritos y circunscritos en la circinferencia realizada por Kashi (s. XV). Después de más de 150 años, en 1593, en Europa, Viète encontró sólo nueve cifras exactas. Hubo que esperar a fines del siglo XVI y comienzos del XVII para repetir el cálculo de Kashi.

  • cálculo de raíces por el método conocido actualmente como de Ruffini-Horner, posiblemente como resultado de la estrecha colaboración con los matemñaticos chinos. Además fue advertida y expresada la serie del desarrollo binomial y fue también enunciada la tabla de coeficientes binomiales.

    extracción aproximada de raíces, utilizando la interpolación lineal.

  • sumación de progresiones aritméticas y geométricas.

Asimismo, en virtud de la frecuente aplicación en los cálculos de las irracionalidades, el límite entre los números racionales y los irracionales comenzó a difuminarse, ampliándose la concepción de número real positivo. La idea de una concepción única del número real obtuvo pues, en el oriente Medio cierto perfeccionamiento.

Los trabajos algebraicos árabes entre los siglos IX-XV además de la resolución de ecuaciones de primer y segundo grado, incluían también las ecuaciones cúbicas. A estas últimas conducían diferentes tipos de problemas como la división de la esfera por un plano, la trisección del ángulo, la búsqueda del lado de un polígono regular de 9 lados…

Otra dirección en la resolución de ecuaciones cúbicas, se basaba en la obtención de la imagen geométrica de la raíz positiva, por medio de la intersección de secciones cónicas, convenientemente elegidas. Sin embargo el gran defecto del álgebra de esta época era la ausencia de una simbología, lo que contuvo el desarrollo del álgebra.

En el continente europeo, las matemáticas no tienen un origen tan antiguo como en muchos países del Lejano y Medio Oriente, alcanzando sólo éxitos notorios en la época del medievo desarrollado y especialmente en el Renacimiento.



El punto de arranque de las matemáticas en Europa fue la creación de los centros de enseñanza. Con anterioridad, tan solo algunos monjes se dedicaron a estudiar las obras de ciencias naturales y matemáticas de los antiguos. Uno de los primeros centros de enseñanza fue organizado en Reims (Francia) por Gerberto (Silvestre II) (940-1003). Fue posiblemente el primero en Europa que enseñó el uso de los numerales indo-arábigos. Sin embargo hubo que esperar a que los musulmanes rompieran la barrera lingüística, hacia el siglo XII, para que surgiera una oleada de traducciones que pusieran en marcha la maquinaria matemática. El trabajo de los traductores fue sensacional. Así Gerardo de Cremona (1114-1187) tradujo del árabe más de 80 obras.



Durante el siglo XIII surgió la figura de Leonardo de Pisa (1180-1250) más conocido como Fibonacci. Alrededor del año 1202 escribió su célebre obra “Liber Abaci” (el libro del ábaco), en el que se encuentran expuestos: el cálculo de números según el sistema de numeración posicional; operaciones con fracciones comunes, aplicaciones y cálculos comerciales como la regla de tres simple y compuesta, la división proporcional, problemas sobre la determinación de calidad de las monedas; problemas de progresiones y ecuaciones; raíces cuadradas y cúbicas… Fibonacci quedó inmortalizado por la famosa “sucesión de Fibonacci” y el famoso problema de los conejos.

El profesor parisino Nicole Oresmes (1328-1382) generalizó el concepto de potencia, introduciendo los exponentes fraccionarios, las reglas de realización de las operaciones con ellos y una simbología especial, anticipándose de hecho a la idea de logaritmo.



Ya en el siglo XV, Regiomontano enriqueció el concepto de número, introduciendo los radicales y las operaciones con ellos, ampliando así las posibilidades de resolución de ecuaciones. Nicolo Tartaglia (1500-1557), Fiore y Scipión del Ferro (1456-1474) desarrollaron fórmulas para la búsqueda de ecuaciones de tercer grado. Pero fue Jerónimo Cardano (1501-1576) quien introdujo un método regular de resolución de ecuaciones de tercer y cuarto grado en su obra “Ars Magna”. En esta obra se expresan diversos teoremas que relacionan raíces y coeficientes, así como la divisibilidad de un polinomio por factores (x-x1), donde x1 es raíz del polinomio. Asimismo en esta obra se establece un notable cambio desde el álgebra literal al álgebra simbólica.

Fue François Viète (1540-1603) quien dio un sistema único de símbolos algebraicos consecuentemente organizado, gracias al cual resultó por primera vez posible, la expresión de ecuaciones y sus propiedades mediante fórmulas generales. Viète estableció en todo momento, una fuerte conexión entre los trabajos trigonométricos y algebraicos, de forma que de igual manera que se le considera el creador del álgebra lineal, se le podría considerar como uno de los padres del enfoque analítico de la trigonometría, esto es, la goniometría.

En 1614 fue publicada por John Neper (1550-1617) la obra “Canonis mirifici logarithmorum descriptio” y en ella las primeras tablas de logaritmos de funciones trigonométricas. Años más tarde, en estrecha colaboración con Henry Briggs (1561-1630) desarrollaron el sistema logarítmico decimal. La teoría de las funciones logarítmicas fue seguidamente desarrollada, alcanzando su culminación en los trabajos de Leonard Euler. Junto a estos avances científico-matemáticos comenzaron a desarrollarse las primeras máquinas de cálculo.



Ya en pleno siglo XVII, la última parte de la famosa obra de Descartes(1596-1650) “Discurso del Método” denominada “Géometrie”, detalla en su comienzo, instrucciones geométricas para resolver ecuaciones cuadráticas, centrándose seguidamente en la aplicación del álgebra a ciertos problemas geométricos. Analiza también curvas de distintos órdenes, para terminar en el tercer y último libro que compone la obra, con la construcción de la teoría general de ecuaciones, llegando a la conclusión de que el número de raíces de una ecuación es igual al grado de la misma, aunque no pudo demostrarlo. Prácticamente la totalidad de la Géometrie está dedicada a la interrelación entre el álgebra y la geometría.

El desarrollo posterior de la geometría analítica, mostró que las ideas de Descartes sobre la unificación del álgebra y geometría no pudo realizarse sino que siguieron un camino separado aunque relacionado, de hecho durante la segunda mitad de siglo el álgebra siguió rompiendo su hermandad con la geometría, fortaleciéndose el aparato simbólico literal, alcanzando gran desarrollo la teoría de ecuaciones.

La teoría de números se enriqueció con las famosas investigaciones de Fermat. En particular a él pertenece el conocido “Gran teorema de Fermat”. En el año 1665 B. Pascal formuló el principio de inducción matemática.



Ya en el siglo XVIII los métodos del cálculo aritmético se enriquecieron con la aparición de los logaritmos.

La independencia de álgebra y geometría (en contra de las ideas de Descartes) continuó determinándose ya a comienzos de siglo, cuando en 1707 vio la luz la “Aritmética Universal” de Newton. En ella el álgebra se exponía en estrecha relación con el desarrollo de los métodos de cálculo, relegando las cuestiones geométricas al dominio de las aplicaciones. La esencia de la obra consiste en reducir cualquier problema a la formación de una ecuación algebraica, cuya raíz es la solución del problema. Culmina el libro con los resultados de la teoría general de ecuaciones y además la resolución gráfica de éstas, mediante la construcción geométrica de las raíces. Este famoso tratado contiene las fórmulas, para las sumas de las potencias de las raíces de una ecuación algebraica, fórmulas conocidas habitualmente como “identidades de Newton”. Aparece también un teorema que permite determinar el número de raíces reales de un polinomio, así como una regla para determinar una cota superior de las raíces positivas.

Después de la Aritmética Universal de Newton, surgieron una serie de monografías, especialmente centradas en los procedimientos de resolución numérica de ecuaciones, elaboradas por Halley, Lagrange, Fourier y Maclaurin entre otros.

En 1768 apareció la “Aritmética Universal” de Euler, dictada por éste cuando ya estaba ciego. En ella se analizan un sin fin de resultados: se generalizan las reglas de resolución de problemas aritméticos; se desarrolla el aparato simbólico-literal del álgebra; se aclaran las operaciones con números, monomios, radicales y complejos; se introducen los logaritmos; se dan las reglas de extracción de las raíces de números y de expresiones algebraicas polinomiales; se introducen las serie como medio de expresión de las funciones racionales fraccionarias y binomiales con exponentes fraccionarios y negativos de una potencia; se introducen los números poligonales, las proporciones y progresiones, las fracciones decimales periódicas y se estudian los métodos de resolución de ecuaciones algebraicas.

Así, en esencia, el álgebra se convirtió en la ciencia sobre las ecuaciones algebraicas. En ella se incluía además, la elaboración del aparato simbólico-literal necesario para la resolución de tales ecuaciones.

También se profundizó en el concepto de número, produciéndose de una manera definitiva la admisión de los números irracionales. Igualmente se profundizó en las reglas de operaciones con números imaginarios y complejos, pero siempre bajo la premisa de la obtención de raíces de ecuaciones.

Fue también Euler quien se ocupó de una manera definitiva de lo que hoy en día conocemos como teoría de números. Comenzó estudiando los teoremas de Fermat, para desarrollar a continuación todos los aspectos de esta teoría, preferentemente utilizando métodos aritméticos y algebraicos, rehuyendo en la medida de lo posible del análisis infinitesimal. A él debemos la actual teoría de congruencias, a la que llegó tras extensos trabajos sobre la divisibilidad y tras introducir el concepto de raíz primitiva según el módulo m.

No de menor importancia que la teoría de congruencias fueron sus trabajos sobre problemas de análisis diofántico, para cuyas necesidades elaboró y fundamentó la teoría de las fracciones continuas. Asimismo elaboró los métodos analíticos para la resolución de problema de la distribución de números primos, en la serie de los números naturales y también para una serie de problemas aditivos. El primero de estos problemas fue tratado también por Legendre y Chebyshev. Para el segundo de los problemas, donde se estudia el desarrollo de los números grandes en sumandos menores, cabe destacar junto a Euler los nombres de Waring y Lagrange.

La teoría de números en el siglo XVIII, se convirtió pues, en una rama independiente, sintetizada en los trabajos de Euler, Lagrange, Legendre y Lambert entre otros, definiéndose prácticamente los principales problemas y direcciones.



El siglo XIX merece ser llamado más que ningún otro periodo anterior la edad de Oro de la Matemática.

Las particularidades del nuevo periodo se manifiestan ya nada más comenzar el siglo. En álgebra hay que tener en cuenta los trabajos de Abel y Galois sobre la resolución de ecuaciones algebraicas en radicales. Ellos promovieron a un primer lugar en el álgebra una serie de conceptos generales muy abstractos, entre los cuales merece el primer lugar el concepto de grupo, dando lugar al nacimiento del Álgebra moderna.

El álgebra moderna es un campo extraordinariamente amplio y ramificado en el que se recogen un gran número de disciplinas científicas e independientes cuyo objeto común son las operaciones algebraicas, las cuales representan abstracciones lejanas de las operaciones del álgebra elemental. Estudiemos de una manera más detallada estas disciplinas.


Teoría General de las Ecuaciones algebraicas:
Este fue el problema fundamental del álgebra durante el siglo XIX, entendiéndose como la búsqueda de las raíces de la ecuación con ayuda de operaciones racionales y la operación de la extracción de la raíz.

En este época se introdujeron una serie de conceptos, entre ellos el concepto de grupo, que yacen en la base del álgebra moderna. Tengamos en cuenta los trabajos de K.F. Gauss, N.H. Abel y E. Galois, relativos a la demostración de la no resolubilidad en radicales de las ecuaciones de grado mayor que cinco y la creación de la teoría de Galois.

Karl Friedrich Gauss hizo sus primeros descubrimientos en álgebra siendo muy joven, advirtiendo ya en 1796 la relación entre la búsqueda de raíces de la ecuación xn-1=0 y la división de la circunferencia en partes iguales. Tres años más tarde demostraba el teorema fundamental del álgebra, dando en 1815, 1816 y 1849 tres nuevas demostraciones. Recordemos que la primera formulación de este teorema, sin demostrar, fue la dada por Descartes. para la demostración de este teorema necesitó construir los campos de desarrollo de los polinomios.

Otro de los notables descubrimientos algebraicos de comienzo de siglo es la demostración de la irresolubilidad en radicales de las ecuaciones de quinto grado. Por este camino llevó P. Ruffini sus investigaciones a finales del siglo XVIII, pero el primer éxito real lo obtuvo Niels Henrik Abel. Tras esto, Abel realizó investigaciones fundamentales en el campo de la teoría de funciones analíticas, e investigó una serie de funciones especiales como las elípticas e hiperbólicas. Pero Abel no pudo dar un criterio general de resolubilidad en radicales de las ecuaciones con coeficientes numéricos.

Sin embargo, la solución a este problema no se hizo esperar largamente y se debe a Evaristo Galois. El objeto fundamental de sus investigaciones fue el determinar cuando son resolubles mediante radicales las ecuaciones polinómicas. El aparato algebraico introducido tuvo, sin embargo, una significación que salía de los marcos del problema indicado. Su idea del estudio de la estructura de los campos algebraicos y la comparación con ellos de la estructura de los grupos de un número finito de sustituciones, fue la base fructífera del álgebra moderna. la teoría actual de Galois, se ha convertido en una disciplina matemática compleja y ramificada, que incluye un amplio material sobre las relaciones entre las propiedades de las ecuaciones, los números algebraicos y los grupos.


Teoría de Grupos.

Galois y Ruffini introdujeron de forma independiente el concepto de grupo. En la primera mitad del siglo XIX, los resultados de la teoría de grupo jugaron un papel auxiliar, especialmente en la teoría de las ecuaciones algebraicas, formándose, predominantemente, la teoría de los grupos finitos.

Posteriormente, ya en los años 50, en trabajos de Cayley y otros, comenzaron a aparecer definiciones abstractas más generales de grupo. este proceso se aceleró desde el año 1870 con los trabajos de C. Jordan, quien hizo un resumen de los resultados de la teoría de grupos finitos en su aplicación a la teoría de números, teoría de funciones y geometría algebraica.

A finales de siglo, aparecieron las primeras aplicaciones de la teoría de grupo, resolviéndose, por ejemplo, el problema de la clasificación de todas las redes cristalinas espaciales gracias a los trabajos de E.S Fiedorov . Los grupos discretos finitos, a los que pertenecen los grupos de Fiedorov, obtuvieron extensión en la teoría de los espacios multidimensionales en relación con la teoría de los poliedros regulares en éstos.

Posteriormente se planteó la investigación de los grupos infinitos, tanto discretos como continuos y también sobre la creación de un aparato de cálculo adaptado a las necesidades de la teoría de grupo. los logros fundamentales sobre estas cuestiones pertenecen a los discípulos de C. Jordan, F. Klein y S. Lie.

En la confluencia de los siglos XIX y XX la teoría de grupos se ramificó desmesuradamente, formando el núcleo del álgebra actual. Ella se compone de una serie de teorías altamente desarrolladas: los grupos finitos, los grupos discretos infinitos, los grupos continuos, entre ellos los grupos de Lie. Los métodos teóricos de grupos penetraron en una serie de disciplinas matemáticas y sus aplicaciones. Los descubrimientos de De Broglie, Schrödinger, Dirac y otros, en la mecánica cuántica y en la teoría de la estructura de la materia mostraron que la física moderna debe apoyarse en la teoría de los grupos continuos, en particular en la teoría de la representación de grupos por operadores lineales, la teoría de los caracteres y otras elaboradas por Cartan, H. Weyl y otros científicos.

Pasó medio siglo desde los trabajos de Gauss, Abel y Galois y el centro de gravedad en las investigaciones algebraicas se trasladó a la teoría de grupos, subgrupos, anillos, estructuras. En al álgebra comenzó el periodo de las matemáticas modernas.


Álgebra Lineal:

La historia del álgebra del siglo XIX quedaría incompleta si no atendiésemos a la formación del álgebra lineal, surgida de la teoría de los sistemas de ecuaciones lineales y relacionada con la teoría de determinantes y matrices. Durante la segunda mitad de siglo se realizaron investigaciones muy importantes de la teoría de los invariantes de las ecuaciones. En este camino del desarrollo, creció la teoría de las formas que encontró aplicación además de en el álgebra, en la teoría de números, la geometría diferencial, la geometría algebraica y la mecánica.


Teorías de Número Real y Teoría de Conjuntos:

En el año 1872 surgieron una serie de trabajos, escritos por G. Cantor, R. Dedekind, K. Weierstrass, E. Heine y Ch. Meray cuyo único objetivo era el de dotar de una teoría rigurosa al número real, problema éste considerado vital para una correcta fundamentación del análisis.

Así Dedekind definió el número real como una cortadura en el conjunto de los números racionales, dando al conjunto de los números reales una interpretación geométrica en forma de línea recta.

Cantor, por su parte, identificó al número real con una sucesión convergente de números racionales.

La creación de la teoría de conjuntos infinitos y los números transfinitos pertenece también a G. Cantor. Él demostró la no equivalencia de los conjuntos de números racionales y reales. Durante los años 1879 a 1884 elaboró de forma sistemática la teoría de conjuntos, introduciendo el concepto de potencia de un conjunto, el concepto de punto límite, de conjunto derivado… La teoría general de las potencias de conjuntos, las transformaciones y operaciones sobre conjuntos y las propiedades de los conjuntos ordenados constituyeron fundamentalmente la teoría abstracta de conjuntos.

GEOMETRÍA

La historia del origen de la Geometría es muy similar a la de la Aritmética, siendo sus conceptos más antiguos consecuencia de las actividades prácticas. Los primeros hombres llegaron a formas geométricas a partir de la observación de la naturaleza.
El sabio griego Eudemo de Rodas, atribuyó a los egipcios el descubrimiento de la geometría, ya que, según él, necesitaban medir constantemente sus tierras debido a que las inundaciones del Nilo borraban continuamente sus fronteras. Recordemos que, precisamente, la palabra geometría significa medida de tierras.

Los egipcios se centraron principalmente en el cálculo de áreas y volúmenes, encontrando, por ejemplo, para el área del círculo un valor aproximado de ( de 3′1605. Sin embargo el desarrollo geométrico adolece de falta de teoremas y demostraciones formales. También encontramos rudimentos de trigonometría y nociones básicas de semejanza de triángulos.

También se tienen nociones geométricas en la civilización mesopotámica, constituyendo los problemas de medida el bloque central en este campo: área del cuadrado, del círculo (con una no muy buena aproximación de (=3), volúmenes de determinados cuerpos, semejanza de figuras, e incluso hay autores que afirman que esta civilización conocía el teorema de Pitágoras aplicado a problemas particulares, aunque no, obviamente, como principio general.

No se puede decir que la geometría fuese el punto fuerte de las culturas china e india, limitándose principalmente a la resolución de problemas sobre distancias y semejanzas de cuerpos. También hay quien afirma que estas dos civilizaciones llegaron a enunciados de algunos casos particulares del teorema de Pitágoras, e incluso que desarrollaron algunas ideas sobre la demostración de este teorema.

En los matemáticos de la cultura helénicalos problemas prácticos relacionados con las necesidades de cálculos aritméticos, mediciones y construcciones geométricas continuaron jugando un gran papel. Sin embargo, lo novedoso era, que estos problemas poco a poco se desprendieron en una rama independiente de las matemáticas que obtuvo la denominación de “logística”. A la logística fueron atribuidas: las operaciones con números enteros, la extracción numérica de raíces, el cálculo con la ayuda de dispositivos auxiliares, cálculo con fracciones, resolución numérica de problemas que conducen a ecuaciones de 1er y 2º grado, problemas prácticos de cálculo y constructivos de la arquitectura, geometría, agrimensura, etc…

Al mismo tiempo ya en la escuela de Pitágoras se advierte un proceso de recopilación de hechos matemáticos abstractos y la unión de ellos en sistemas teóricos. Junto a la demostración geométrica del teorema de Pitágoras fue encontrado el método de hallazgo de la serie ilimitada de las ternas de números “pitagóricos”, esto es, ternas de números que satisfacen la ecuación a2+b2=c2.

En este tiempo transcurrieron la abstracción y sistematización de las informaciones geométricas. En los trabajos geométricos se introdujeron y perfeccionaron los métodos de demostración geométrica. Se consideraron, en particular: el teorema de Pitágoras, los problemas sobre la cuadratura del círculo, la trisección de un ángulo, la duplicación del cubo, la cuadratura de una serie de áreas (en particular las acotadas por líneas curvas).

.Paralelamente, al ampliarse el número de magnitudes medibles, debido a la aparición de los números irracionales, se originó una reformulación de la geometría, dando lugar al álgebra geométrica. Esta nueva rama incluía entre otros conceptos el método de anexión de áreas, el conjunto de proposiciones geométricas que interpretaban las cantidades algebraicas, división áurea, expresión de la arista de un poliedro regular a través del diámetro de la circunferencia circunscrita. Sin embargo, el álgebra geométrica estaba limitada a objetos de dimensión no mayor que dos, siendo inaccesibles los problemas que conducían a ecuaciones de tercer grado o superiores, es decir, se hacían imposibles los problemas que no admitieran solución mediante regla y compás. La historia sobre la resolución de los tres problemas geométricos clásicos (sobre la cuadratura del círculo, la trisección de un ángulo, la duplicación del cubo) está llena de anécdotas, pero lo cierto es que como consecuencia de ellos surgieron, por ejemplo, las secciones cónicas, cálculo aproximado del número pi, el método de exhaución como predecesor del cálculo de límites o la introducción de curvas trascendentes.

Asimismo, el surgimiento de la irracionalidad condicionó la necesidad de creación de una teoría general de las relaciones, teoría cuyo fundamento inicial lo constituyó el algoritmo de Euclides.


Las primeras teorías matemáticas que se abstrajeron de los problemas concretos o de un conjunto de problemas de un mismo tipo, crearon las condiciones necesarias y suficientes para el reconocimiento de la autonomía y especificidad de las matemáticas.

El carácter abstracto del objeto de las matemáticas y los métodos de demostración matemática establecidos, fueron las principales causas para que esta ciencia se comenzara a exponer como una ciencia deductiva, que a partir de unos axiomas, presenta una sucesión lógica de teoremas. Las obras en las cuales, en aquella época se exponían los primeros sistemas matemáticos de denominaban “Elementos”.

Se encuentran elementos pertenecientes a muchos autores, sin embargo todos ellos han quedado relegados a un segundo plano tras la obra matematica más impresionante de la historia: Los Elementos de Euclides. “Los Elementos”, como denominaremos a esta obra a partir de ahora, están constituidos por trece libros, cada uno de los cuales consta de una sucesión de teoremas. A veces se añaden otros dos, los libros 14 y 15 que pertenecen a otros autores pero por su contenido, están próximos al último libro de Euclides.

En “Los Elementos” de Euclides se recogen una serie de axiomas o postulados que sirvieron de base para el posterior desarrollo de la geometría. Es de especial interés, por la controversia que originó en épocas posteriores el quinto axioma, denominado “el de las paralelas”, según el cual dos rectas paralelas no se cortan nunca. Durante siglos se asumió este axioma como irrebatible, hasta que en el siglo XIX surgieron las llamadas geometrías no euclídeas, que rebatieron este postulado.


Con posterioridad a Euclides y Arquímedes, las matemáticas cambiaron fuertemente, tanto en su forma como en su contenido, haciendo el proceso de formación de nuevas teorías más pausado, hasta llegar a interrumpirse.

Entre las nuevas teorías desarrolladas ocupa el primer lugar la teoría de las secciones cónicas, que surgió de las limitaciones del álgebra geométrica. El interés hacia las secciones cónicas creció a medida que aumentaban la cantidad de problemas resueltos con su ayuda. Sin duda, la obra más completa, general y sistemática de las secciones cónicas se debe a Apolonio de Perga.


En la época del dominio romano destacan algunos recetarios en forma de reglas que permitían el cálculo de algunas áreas y volúmenes; y en especial la conocida fórmula de Herón para calcular el área del triángulo conocidos los tres lados.

Durante el primer siglo del Imperio Musulmán no se produjo ningún desarrollo científico, ya que los árabes, no habían conseguido el impulso intelectual necesario, mientras que el interés por el saber en el resto del mundo, había desaparecido casi completamente. Fue a partir de la segunda mitad del siglo VIII, cuando comenzó el desenfrenado proceso de traducir al árabe todas las obras griegas conocidas, fundándose escuelas por todo el Imperio.

Destacaremos como avance anecdótico, pero no por ello carente de valor, la obtención del número pi con 17 cifras exactas mediante polígonos inscritos y circunscritos en la circinferencia realizada por Kashi (s. XV). Después de más de 150 años, en 1593, en Europa, Viète encontró sólo nueve cifras exactas. Hubo que esperar a fines del siglo XVI y comienzos del XVII para repetir el cálculo de Kashi.


El rasgo característico más importante de las matemáticas árabes fue la formación de la trigonometría. En relación con los problemas de astronomía, confeccionaron tablas de las funciones trigonométricas con gran frecuencia y alto grado de exactitud, tanto en trigonometría plana como esférica.

Entre las obras geométricas destacan las de Omar Khayyam (s. XVI) y Nasir Edin (s. XIII), directamente influenciadas por las obras clásicas, pero a las que contribuyeron con distintas generalizaciones y estudios críticos, como los relativos al axioma euclideano del paralelismo, que pueden considerarse como estudios precursores de la geometría no euclideana.

En el continente europeo, las matemáticas no tienen un origen tan antiguo como en muchos países del Lejano y Medio Oriente, alcanzando sólo éxitos notorios en la época del medievo desarrollado y especialmente en el Renacimiento.


Podemos considerar la obra de Fibonacci “Practica Geometriae” como el punto de arranque de la geometría renacentista. Esta obra está dedicada a resolver determinados problemas geométricos, especialmente medida de áreas de polígonos y volúmenes de cuerpos.

Otro contemporáneo, aunque no tan excepcionalmente dotado fue Jordano Nemorarius (1237-?) a quien debemos la primera formulación correcta del problema del plano inclinado.

El profesor parisino Nicole Oresmes (1328-1382) llegó a utilizar en una de sus obras coordenadas rectangulares, aunque de forma rudimentaria, para la representación gráfica de ciertos fenómenos físicos.



Ya en el siglo XV, época de las grandes navegaciones, la trigonometría fue separada de la astronomía, alzándose como ciencia independiente de la mano de Regiomontano (1436-1474), que trató de una manera sistemática todos los problemas sobre la determinación de triángulos planos y esféricos. Asimismo en esta obra se establece un notable cambio desde el álgebra literal al álgebra simbólica.

Fue François Viète (1540-1603) quien dio un sistema único de símbolos algebraicos consecuentemente organizado, estableciendo en todo momento, una fuerte conexión entre los trabajos trigonométricos y algebraicos, de forma que de igual manera que se le considera el creador del álgebra lineal, se le podría considerar como uno de los padres del enfoque analítico de la trigonometría, esto es, la goniometría.

Para hacer más fáciles los cálculos, los matemáticos desarrollaron ciertos procedimientos en los que, el papel fundamental lo jugaban determinadas relaciones trigonométricas, lo que llevó a la confección de numerosas tablas trigonométricas. En la elaboración de tablas trabajaron, por ejemplo, Copérnico (1473-1543) y Kepler (1571,1630). Semejantes métodos se utilizaban tan frecuentemente que recibieron el nombre de “prostaferéticos”. Ellos fueron utilizados por los matemáticos de Oriente Medio, Viète, Tycho Brahe, Wittich, Bürgi y muchos otros. Estos métodos siguieron utilizándose incluso después de la invención de los logaritmos a comienzos del siglo XVII, aunque sus fundamentos, basados en la comparación entre progresiones aritméticas y geométricas, comenzaron a fraguarse mucho antes.



Durante el siglo XVII surgieron casi todas las disciplinas matemáticas, produciéndose en lo que a la geometría se refiere el nacimiento de la geometría analítica.

Sin duda los dos grandes en esta materia y época fueron René Descartes (1596-1650) y Pierrede Fermat (1601-1655).

La última parte de la famosa obra de Descartes “Discurso del Método” denominada “Géometrie”, detalla en su comienzo, instrucciones geométricas para resolver ecuaciones cuadráticas, centrándose seguidamente en la aplicación del álgebra a ciertos problemas geométricos. Analiza también curvas de distintos órdenes, para terminar en el tercer y último libro que compone la obra, con la construcción de la teoría general de ecuaciones, llegando a la conclusión de que el número de raíces de una ecuación es igual al grado de la misma, aunque no pudo demostrarlo. Prácticamente la totalidad de la Géometrie está dedicada a la interrelación entre el álgebra y la geometría con ayuda del sistema de coordenadas.

Simultáneamente con Descartes, Pierre de Fermat desarrolló un sistema análogo al de aquél. Las ideas de la geometría analítica, esto es, la introducción de coordenadas rectangulares y la aplicación a la geometría de los métodos algebraicos, se concentran en una pequeña obra: “introducción a la teoría de los lugares planos y espaciales”. Aquellos lugares geométricos representados por rectas o circunferencias se denominaban planos y los representados por cónicas, especiales. Fermat abordó la tarea de reconstruir los “Lugares Planos” de Apolonio, describiendo alrededor de 1636, el principio fundamental de la geometría analítica: “siempre que en una ecuación final aparezcan dos incógnitas, tenemos un lugar geométrico, al describir el extremo de uno de ellos una línea, recta o curva”. Utilizando la notación de Viète, representó en primer lugar la ecuación Dx=B, esto es, una recta. Posteriormente identificó las expresiones xy=k2; a2+x2=ky; x2+y2+2ax+2by=c2; a2-x2=ky2 con la hipérbola, parábola circunferencia y elipse respectivamente. Para el caso de ecuaciones cuadráticas más generales, en las que aparecen varios términos de segundo grado, aplicó rotaciones de los ejes con objeto de reducirlas a los términos anteriores.

La extensión de la geometría analítica al estudio de los lugares geométricos espaciales, la realizó por la vía del estudio de la intersección de las superficies espaciales por planos. Sin embargo, las coordenadas espaciales también en él están ausentes y la geometría analítica del espacio quedó sin culminar.

Lo que sí está totalmente demostrado, es que la introducción del método de coordenadas deba atribuirse a Fermat y no a Descartes, sin embargo su obra no ejerció tanta influencia como la Géometrie de Descartes, debido a la tardanza de su edición y al engorroso lenguaje algebraico utilizado.

El desarrollo posterior de la geometría analítica, mostró que las ideas de Descartes sobre la unificación del álgebra y geometría no pudo realizarse sino que siguieron un camino separado aunque relacionado.


El surgimiento de la geometría analítica, aligeró sustancialmente la formación del análisis infinitesimal y se convirtió en un elemento imprescindible para la construcción de la mecánica de Newton, Lagrange y Euler, significanda la aparición de las posibilidades para la creación del análisis de variables.



Ya en el siglo XVIII se completó el conjunto de las disciplinas geométricas y, excluyendo sólo las geometrías no euclideanas y la apenas iniciada geometría analítica, prácticamente todas las ramas clásicas de la geometría, se formaron en este siglo. Así además de la consolidación de la geometría analítica, surgieron la geometría diferencial, descriptiva y proyectiva, así como numerosos trabajos sobre los fundamentos de la geometría. Entre los diferentes problemas y métodos de la geometría, tuvieron gran significado las aplicaciones geométricas del cálculo infinitesimal. De ellas surgió y se desarrolló la geometría diferencial, la ciencia que ocupó durante el siglo XVIII el lugar central en al sistema de las disciplinas geométricas. Estudiemos por separado cada una de estas ramas:


Geometría Analítica:

Bajo esta denominación se considera aquella parte de la geometría donde se estudian las figuras y transformaciones geométricas dadas por ecuaciones algebraicas. Las puertas a esta rama fueron abiertas, ya en el siglo XVII por Descartes y Fermat, pero sólo incluían problemas planos. Hubo de ser Newton quien en 1704 diera un paso importante al publicar la obra, “Enumeración de las curvas de tercer orden”, clasificando las curvas según el número posible de puntos de intersección con una recta, obteniendo un total de 72 tipos de curvas, que se podían representar por ecuaciones de cuatro tipos. Si designamos ax3+bx2+cx+d=A, entonces las soluciones indicadas serán: xy2+ey=A ; xy=A ; y2=A ; y=A. Sin embargo, lo verdaderamente importante de esta obra fue el descubrimiento de las nuevas posibilidades del método de coordenadas, definiendo los signos de las funciones en los cuatro cuadrantes.

Con posterioridad a Newton, las curvas de tercer orden fueron estudiadas por Stirling, Maclaurin, Nicolle, Maupertius, Braikenridge, Steiner, Salmon, Silvestre, Shall, Clebsch y otros.

Fue Euler quien, en 1748, sistematizó la geometría analítica de una manera formal. En primer lugar expuso el sistema de la geometría analítica en el plano, introduciendo además de las coordenadas rectangulares en el espacio, las oblicuas y polares. En segundo lugar, estudió las transformaciones de los sistemas de coordenadas. También clasificó las curvas según el grado de sus ecuaciones, estudiando sus propiedades generales. En otros apartados de sus obras trató las secciones cónicas, las formas canónicas de las ecuaciones de segundo grado, las ramas infinitas y asintóticas de las secciones cónicas y clasificó las curvas de tercer y cuarto orden, demostrando la inexactitud de la clasificación newtoniana. También estudió las tangentes, problemas de curvaturas, diámetros y simetrías, semejanzas y propiedades afines, intersección de curvas, composición de ecuaciones de curvas complejas, curvas trascendentes y la resolución general de ecuaciones trigonométricas. Todo estos aspectos se recogen en el segundo tomo de la obra “Introducción al análisis…” que Euler dedicó exclusivamente a la geometría analítica.

En la segunda mitad del siglo se introdujeron sólo mejoras parciales, pues en lo fundamental, la geometría analítica ya estaba formada. Destacaremos entre otros los nombres de G. Monge, Lacroix y Menier.


Geometría diferencial:

Esta disciplina matemática se encarga del estudio de los objetos geométricos, o sea, las curvas, superficies etc… Su singularidad consiste en que partiendo de la geometría analítica utiliza métodos del cálculo diferencial.

A comienzos de siglo ya habían sido estudiados muchos fenómenos de las curvas planas por medio del análisis infinitesimal, para pasar posteriormente a estudiar las curvas espaciales y las superficies. Este traspaso de los métodos de la geometría bidimensional al caso tridimensional fue realizado por Clairaut. Sin embargo, su obra fue eclipsada, como casi todo en esta época, por los trabajos de Euler.

El primer logro de Euler en este terreno, fue la obtención de la ecuación diferencial de las líneas geodésicas sobre una superficie, desarrollando a continuación una completa teoría de superficies, introduciendo entre otros el concepto de superficie desarrollable.

A finales de siglo, es desarrollo de esta rama entró en un ligero declive, debido principalmente a la pesadez y complejidad del aparato matemático.


Geometría descriptiva y proyectiva:

Los métodos de la geometría descriptiva surgieron en el dominio de las aplicaciones técnicas de la matemática y su formación como ciencia matemática especial, se culminó en los trabjos de Monge, cuya obra en este terreno quedó plasmada en el texto “Géometrie descriptive”. En la obra se aclara, en primer lugar, el método y objeto de la geometría descriptiva, prosiguiendo a continuación, con instrucciones sobre planos tangentes y normales a superficies curvas. Analiza en capítulos posteriores la intersección de superficies curvas y la curvatura de líneas y superficies.

El perfeccionamiento de carácter particular y la elaboración de diferentes métodos de proyección contituyeron el contenido fundamental de los trabjos sobre geometría proyectiva en lo sucesivo. La idea del estudio de las propiedades proyectivas de los objetos geométricos, surgió como un nuevo enfoque que simplificara la teoría de las secciones cónicas. Las obras de Desargues y Pascal resuelven este problema y sirven de base a la nueva geometría.



Como acabamos de ver la geometría hacia comienzos del siglo XIX representaba ya un amplio complejo de disciplinas surgidas del análisis y generalizaciones de los datos sobre las formas espaciales de los cuerpos. Junto a las partes elementales, se incluyeron en la geometría casi todas aquellas partes que la conforman actualmente.


La geometría analítica realizó un gran camino de desarrollo y determinó su lugar como parte de la geometría que estudia las figuras y transformaciones dadas por ecuaciones algebraicas con ayuda del método de coordenadas utilizando los métodos del álgebra.


La geometría diferencial se caracterizó por la utilización de los conceptos y métodos del cálculo diferencial, lo que conllevó relaciones estables con el análisis matemático y con numerosos problemas aplicados.


Una de las características principales de la geometría que se desarrolló durante la segunda mitad del siglo XIX, fue el entusiasmo con que los matemáticos estudiaron una gran variedad de transformaciones. De ellas, las que se hicieron más populares fueron las que constituyen el grupo de transformaciones que definen la denominada geometría proyectiva. Los métodos aparentemente detenidos en su desarrollo desde la época de Desargues y Pascal, de estudio de las propiedades de las figuras invariantes respecto a la proyección, se conformaron en los años 20 del siglo XIX en una nueva rama de la geometría: la geometría proyectiva, merced sobre todo a los trabajos de J. Poncelet.


Otro aspecto esencial durante este siglo fue el desarrollo de las geometrías no euclideanas. Podríamos considerar fundador de esta geometría al matemático ruso Nicolai Ivanovich Lobachevski (1792-1856). Su obra mostraba que era necesario revisar los conceptos fundamentales que se admitían sobre la naturaleza de la matemática, pero ante el rechazo de sus contemporáneos tuvo que desarrollar sus ideas en solitario aislamiento.

El punto de partida de las investigaciones de Lobachevski sobre geometría no euclideana fue el axioma de las paralelas de Euclides, sin demostración durante siglos. Lobachevski, que inicialmente intentó demostrar dicho axioma, rápidamente se dio cuenta que ello era imposible, sustituyendo dicho axioma por su negación: a través de un punto no contenido en una recta se puede trazar más de una paralela que yace en el mismo plano que la primera.

El año 1826 puede considerarse como la fecha de nacimiento de esta geometría no euclideana o lobachevskiana, siendo en ese año cuando el autor presentó muchos de los trabajos que avalaban la nueva teoría.

En 1829 Janos Bolyai (1802-1860) llegó a la misma conclusión a la que había llegado Lobachevski. E incluso el mismo Gauss que apoyaba y elogiaba a escondidas, nunca de forma pública, los trabajos de Bolyai y Lobachevski, es posible que mantuviera los mismos puntos de vista pero los calló por temor a comprometer su reputación científica.

La geometría no euclideana continuó siendo durante varias décadas un aspecto marginal de la matemática, hasta que se integró en ella completamente gracias a las concepciones extraordinariamente generales de Rieman.

lunes, 19 de abril de 2010

Redondeo (Aproximación por)

Aproximar un número a ciertas cifras decimales consiste en encontrar un número con las cifras pedidas que esté muy próximo al número dado.

Las aproximaciones que son menores que el valor exacto se llaman aproximaciones por defecto y las que son mayores se llaman aproximaciones por exceso.

El número de cifras decimales de la proximación elegida determina su orden de aproximación. De este modo si aproximamos Pi por 3,1, diremos que el orden de aproximación es de las décimas, o que aproximamos Pi a las décimas.

Redondeo: Cuando consideramos la aproximación decimal más cercana al valor exacto.

Veamos un ejemplo: Pensemos en el número: 5,783687.

5,7 y 5,8 son aproximaciones a la décima por defecto y por exceso respectivamente de 5,783687. Sin embargo, este número es más cercano a 5,8 que a 5,7. Entonces 5,8 resulta una mejor aproximación de 5,783687 que 5,7. Se dice que 5,8 es la aproximación por redondeo a la décima de 5,783687.

Para obtener la aproximación por redonde de un número hasta un determinado orden, observa la primera cifra que debemos suprimir:

- Si esta cifra es menor que 5, aproxime por defecto.
- Si esta cifra es mayor o igual que 5, aproxime por exceso, es decir, aumente en una unidad la última cifra que se conserva.

Pensemos en Pi = 3.14159 .... Intentemos redondearlo a las milésima:

Como la primera cifra a suprimir es 5, y 5 es mayor o igual a 5, aproximamos por exceso, es decir aumentamos en una unidad la cifra de las milésimas. La aproximación pedida es 3,412.

(Texto tomado de Manual de Preparación Matemática - U.Católica)

Truncamiento (Aproximación por)

Aproximar un número a ciertas cifras decimales consiste en encontrar un número con las cifras pedidas que esté muy próximo al número dado.

Las aproximaciones que son menores que el valor exacto se llaman aproximaciones por defecto y las que son mayores se llaman aproximaciones por exceso.

El número de cifras decimales de la proximación elegida determina su orden de aproximación. De este modo si aproximamos Pi por 3,1, diremos que el orden de aproximación es de las décimas, o que aproximamos Pi a las décimas.

Truncamiento: Es uno de los procedimientos que se utilizan para aproximar un número Real.

Si se considera el número que resulta de suprimir cifras a partir del orden de aproximación.

Ejemplo, si x= 5,783687 y lo utilizamos como: 5,7
Entonces decimos que la proximación por truncamiento es a las décimas!

(Texto tomado de Manual de Preparación Matemática - U.Católica)

martes, 13 de abril de 2010

Constante de Proporcionalidad Negativa

Constante de Proporcionalidad Negativa:


La constante de proporcionalidad k puede ser negativa. En este caso, la gráfica de y=kx corresponde a una línea recta que pasa por el origen, pero con una pendiente negativa.

domingo, 11 de abril de 2010

Racionalización (2)

Racionalización de Expresiones de la forma:
Amplificamos como se muestra a continuación:

miércoles, 7 de abril de 2010

Distribuciones Simétricas y Asimétricas

Distribuciones Simétricas y Asimétricas:

Cuando una distribución es simétrica, moda, mediana y media coinciden aproximadamente en valores y la forma de un histograma (o polígono de frecuencias) se parece a la figura I, en donde el lado derecho de la barra central es simétrico a su lado izquierdo.

Llamamos la distribución de un conjunto de datos Asimétrica, cuando la forma del histograma No presenta simetría con respecto a la barra central, las medidas de tendencia central pueden diferir de las siguientes formas: