Diccionario Matemáticas - Fórmulas Matemáticas - Conceptos Matemáticos - Definiciones Matemáticas - Formularios Matemáticos - Glosario Matemático - Términos Matemáticos - Propiedades Matemáticas - Matemáticas - Ecuaciones Matemáticas - Historia Matemática - Constructos Matemáticos - Vocablos Matemáticos - Tips Matemáticos - Reglas Matemáticas - Teoremas - Axiomas

martes, 2 de febrero de 2010

5 Sólidos Platónicos - Carecterísticas

Características de los 5 Sólidos Platónicos: (Tomado de Wikipedia)

Regularidad

Tal y como se ha expresado para definir estos poliedros:

  • Todas las caras de un sólido platónico son polígonos regulares iguales.
  • En todos los vértices de un sólido platónico concurren el mismo número de caras y de aristas.
  • Todas las aristas de un sólido platónico tienen la misma longitud.
  • Todos los ángulos diedros que forman las caras de un sólido platónico entre sí son iguales.
  • Todos sus vertices son convexos a los del icosaedro.

Simetría

Los sólidos platónicos son fuertemente simétricos:

  • Todos ellos gozan de simetría central respecto a un punto del espacio (centro de simetría) que equidista de sus caras, de sus vértices y de sus aristas.
  • Todos ellos tienen además simetría axial respecto a una serie de ejes de simetría que pasan por el centro de simetría anterior.
  • Todos ellos tienen también simetría especular respecto a una serie de planos de simetría (o planos principales), que los dividen en dos partes iguales.

Como consecuencia geométrica de lo anterior, se pueden trazar en todo sólido platónico tres esferas particulares, todas ellas centradas en el centro de simetría del poliedro:

  • Una esfera inscrita, tangente a todas sus caras en su centro.
  • Una segunda esfera tangente a todas las aristas en su centro.
  • Una esfera circunscrita, que pase por todos los vértices del poliedro.

Proyectando los centros de las aristas de un poliedro platónico sobre su esfera circunscrita desde el centro de simetría del poliedro se obtiene una red esférica regular, compuesta por arcos iguales de círculo máximo, que constituyen polígonos esféricos regulares.

No hay comentarios:

Publicar un comentario