lunes, 13 de junio de 2011

Polya George (Wikipedia)

George Pólya (13 de diciembre de 18877 de septiembre de 1985, Pólya György enhúngaro) fue un matemático que nació en Budapest, Hungría y murió en Palo Alto, EUA. Trabajó en una gran variedad de temas matemáticos, incluidas las series, la teoría de números, geometría, álgebra, análisis matemático, la combinatoria y la probabilidad.

En sus últimos años, invirtió un esfuerzo considerable en intentar caracterizar los métodos generales que usa la gente para resolver problemas, y para describir cómo debería enseñarse y aprender la manera de resolver problemas. Escribió tres libros sobre el tema: Cómo plantear y resolver problemas (How to solve it), Matemáticas y razonamiento plausible, Volumen I: Inducción y analogía en matemáticas y Matemáticas y razonamiento plausible, Volumen II: Patrones de inferencia plausible.

En Cómo plantear y resolver problemas, Pólya proporciona heurísticas generales para resolver problemas de todo tipo, no sólo los matemáticos. El libro incluye consejos para enseñar matemática a los estudiantes y una mini-enciclopedia de términos heurísticos. Ha sido traducido a muchos idiomas y vendido más de un millón de copias. El físico ruso Zhores I. Alfyorov, (Premio Nobel de Física de 2000) lo alabó, diciendo que estaba encantado con el famoso libro de Pólya.

En 1976 la Mathematical Association of America estableció el premio George Pólya "para artículos de excelencia expositiva publicados en el College Mathematics Journal".

En Matemáticas y razonamiento plausible, Volumen I, Pólya habla sobre el razonamiento inductivo en la matemática, mediante el que pretende razonar de casos particulares a reglas generales (también incluye un capítulo sobre la técnica llamada inducción matemática, pero no es el tema principal). En Matemáticas y razonamiento plausible, Volumen II, comenta formas más generales de lógica inductiva que pueden usarse para determinar de forma aproximada hasta qué grado es plausible una conjetura (en particular, una matemática).

[editar]

No hay comentarios:

Publicar un comentario