martes, 26 de marzo de 2013

Teorema de la Probabilidad Total - Teorema de Bayes

Teorema de la Probabilidad Total:

Decimos que los eventos B1, B2, B3, .... , Bk representan una partición del espacio muestral S si:


En otras palabras, cuando se efectúa el experimento "e" ocurre uno y sólo uno de los eventos Bi.

En el diagrama de Venn de la figura, se ilustra esto para k = 8. Por lo tanto podemos escribir:

Por supuesto de que algunos de los conjuntos de intersección entre A y Bj pueden ser vacíos, pero ello no invalida la anterior descomposición de A.

Lo importante es que todos los eventos formados por cada una de las intersecciones, son parejas mutuamente excluyentes. Por lo tanto, podemos aplicar la propiedad aditiva para este tipo de eventos y escribir:
Sin embargo,
cada término de esta suma, se puede expresar usando la Probabilidad Condicional, obteniendo así de esta forma, el llamado Teorema de la Probabilidad Total:
Hacer UN Click en la imagen para agrandar
Este resultado es uy útil, ya que cuando se busca P(A), frecuentemente puede ser difícil calcularlo de forma directa.

Ejemplo: Cierto artículo es manufacturado en tres fábricas, digamos 1,2 y 3. Se sabe que la primera produce el doble de artículos que la segunda y que ésta y la tercera producen el mismo número de artículos (durante le periodo de producción dado). Se sabe también que el 2% de los artículos producidos por las primeras es defectuoso, mientras que el 4% de de los manufacturados por la tercera lo es. Todos los artículos defectuosos son puestos es una fila y se escoge uno al azar. ¿Cuál es la probabilidad de que este artículo sea defectuoso?

Definamos los eventos:

A = { el artículo es defectuoso }
B1 = { el articulo viene de la fábrica 1 }
B2 = { el articulo viene de la fábrica 2 }
B3 = { el articulo viene de la fábrica 3 }

P(B1) = 1/2
P(B2) = 1/4
P(B3) = 1/4

P(A/B1) = 0,02
P(A/B2) = 0,02
P(A/B3) = 0,04

Nos piden P(A)

P(A)= P(A/B1)P(B1) + P(A/B2)P(B2) + P(A/B3)P(B3)
P(A)= (0,02)(1/2) + (0,02)(1/4) + (0,04)(1/4) = 0,025

Veamos ahora el

Teorema de Bayes:

Usaremos el mismo ejemplo anterior para demostrar un resultado interesante. Supongamos que del depósito se escoge un artículo y se encuentra de que es defectuoso. ¿Cuál es la probabilidad de que se produjese en la primera de las fábricas?

Usando la notación de probabilidad condicionada tenemos, siendo B1, B2, B3, .... Bk una partición del espacio muestral S y A un evento asociado a S:


Este resulatdo es conocido como el teorema de Bayes o "Fórmula de la probabilidad de las causas".

Resolviendo para el caso del ejemplo anterior:

HACER un CLICK EN LA IMAGEN PARA AGRANDAR

miércoles, 6 de marzo de 2013

Enactivo (Tomado de un texto de Varela)

Enactivo:

Dice relación con que la cognición es algo que se produce por el acto de manipualr, por medio de una manipulación activa.

domingo, 3 de marzo de 2013

Enacción


La palabra enacción es una castellanización de una derivación del verbo inglés 'to enact', el cual significa «evidenciar algo existente y determinante para el presente» (como en los casos de un actor dando vida a un rol en una pieza teatral); o (para el caso de una gestión gubernamental): «dar funciones a una legislación determinante para el futuro». Para decirlo de una manera más general, 'to enact' y 'enactuar' admiten el sentido de «actuar una parte en una obra, construcción, desarrollo o crecimiento». Es por esto que la expresión «conocimiento enactivo» refiere a aquello que se adquiere a través de la acción del organismo en el mundo.
Este concepto es aplicable a una de las vías posibles para la organización del conocimiento, y asimismo la enacción postula y define una de las formas de interacción con el mundo. Jerome Bruner presentó una definición inicial en los años 1966 a 1968, asociando la Enacción y distinguiéndola, con respecto a los otros dos caminos para la organización del conocimiento: el icónico y el simbólico. Otra definición, más recientemente, fue presentada por Francisco Varela.

(Tomado de Wikipedia)

viernes, 1 de marzo de 2013

Suma REAGRUPANDO - Representación Pictórica - Método Singapur

Suma REAGRUPANDO (con cambio) - Representación Pictórica - Método SINGAPUR


Fórmula de Baskhara

Fórmula que da los valores de las raíces de una Ecuación Cuadrática en función de los coeficientes: a,b,c de la Ecuación Cuadratica: